
10 HASH-BASED INDEXING

Not chaos-like, together crushed and bruised,

But, as the world harmoniously confused:

Where order in variety we see.

—Alexander Pope, Windsor Forest

In this chapter we consider file organizations that are excellent for equality selections.

The basic idea is to use a hashing function, which maps values in a search field into a

range of bucket numbers to find the page on which a desired data entry belongs. We

use a simple scheme called Static Hashing to introduce the idea. This scheme, like

ISAM, suffers from the problem of long overflow chains, which can affect performance.

Two solutions to the problem are presented. The Extendible Hashing scheme uses a

directory to support inserts and deletes efficiently without any overflow pages. The

Linear Hashing scheme uses a clever policy for creating new buckets and supports

inserts and deletes efficiently without the use of a directory. Although overflow pages

are used, the length of overflow chains is rarely more than two.

Hash-based indexing techniques cannot support range searches, unfortunately. Tree-

based indexing techniques, discussed in Chapter 9, can support range searches effi-

ciently and are almost as good as hash-based indexing for equality selections. Thus,

many commercial systems choose to support only tree-based indexes. Nonetheless,

hashing techniques prove to be very useful in implementing relational operations such

as joins, as we will see in Chapter 12. In particular, the Index Nested Loops join

method generates many equality selection queries, and the difference in cost between

a hash-based index and a tree-based index can become significant in this context.

The rest of this chapter is organized as follows. Section 10.1 presents Static Hashing.

Like ISAM, its drawback is that performance degrades as the data grows and shrinks.

We discuss a dynamic hashing technique called Extendible Hashing in Section 10.2

and another dynamic technique, called Linear Hashing, in Section 10.3. We compare

Extendible and Linear Hashing in Section 10.4.

10.1 STATIC HASHING

The Static Hashing scheme is illustrated in Figure 10.1. The pages containing the

data can be viewed as a collection of buckets, with one primary page and possibly
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additional overflow pages per bucket. A file consists of buckets 0 through N − 1,

with one primary page per bucket initially. Buckets contain data entries, which can

be any of the three alternatives discussed in Chapter 8.

h

key

Primary bucket pages Overflow pages

1

0

N-1

h(key) mod N

Figure 10.1 Static Hashing

To search for a data entry, we apply a hash function h to identify the bucket to

which it belongs and then search this bucket. To speed the search of a bucket, we can

maintain data entries in sorted order by search key value; in this chapter, we do not

sort entries, and the order of entries within a bucket has no significance. In order to

insert a data entry, we use the hash function to identify the correct bucket and then

put the data entry there. If there is no space for this data entry, we allocate a new

overflow page, put the data entry on this page, and add the page to the overflow

chain of the bucket. To delete a data entry, we use the hashing function to identify

the correct bucket, locate the data entry by searching the bucket, and then remove it.

If this data entry is the last in an overflow page, the overflow page is removed from

the overflow chain of the bucket and added to a list of free pages.

The hash function is an important component of the hashing approach. It must dis-

tribute values in the domain of the search field uniformly over the collection of buck-

ets. If we have N buckets, numbered 0 through N − 1, a hash function h of the

form h(value) = (a ∗ value + b) works well in practice. (The bucket identified is

h(value) mod N .) The constants a and b can be chosen to ‘tune’ the hash function.

Since the number of buckets in a Static Hashing file is known when the file is created,

the primary pages can be stored on successive disk pages. Thus, a search ideally

requires just one disk I/O, and insert and delete operations require two I/Os (read

and write the page), although the cost could be higher in the presence of overflow

pages. As the file grows, long overflow chains can develop. Since searching a bucket

requires us to search (in general) all pages in its overflow chain, it is easy to see how

performance can deteriorate. By initially keeping pages 80 percent full, we can avoid

overflow pages if the file doesn’t grow too much, but in general the only way to get rid

of overflow chains is to create a new file with more buckets.
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The main problem with Static Hashing is that the number of buckets is fixed. If a

file shrinks greatly, a lot of space is wasted; more importantly, if a file grows a lot,

long overflow chains develop, resulting in poor performance. One alternative is to

periodically ‘rehash’ the file to restore the ideal situation (no overflow chains, about 80

percent occupancy). However, rehashing takes time and the index cannot be used while

rehashing is in progress. Another alternative is to use dynamic hashing techniques

such as Extendible and Linear Hashing, which deal with inserts and deletes gracefully.

We consider these techniques in the rest of this chapter.

10.1.1 Notation and Conventions

In the rest of this chapter, we use the following conventions. The first step in searching

for, inserting, or deleting a data entry k∗ (with search key k) is always to apply a hash

function h to the search field, and we will denote this operation as h(k). The value

h(k) identifies a bucket. We will often denote the data entry k∗ by using the hash

value, as h(k)∗. Note that two different keys can have the same hash value.

10.2 EXTENDIBLE HASHING *

To understand Extendible Hashing, let us begin by considering a Static Hashing file.

If we have to insert a new data entry into a full bucket, we need to add an overflow

page. If we don’t want to add overflow pages, one solution is to reorganize the file at

this point by doubling the number of buckets and redistributing the entries across the

new set of buckets. This solution suffers from one major defect—the entire file has to

be read, and twice as many pages have to be written, to achieve the reorganization.

This problem, however, can be overcome by a simple idea: use a directory of pointers

to buckets, and double the size of the number of buckets by doubling just the directory

and splitting only the bucket that overflowed.

To understand the idea, consider the sample file shown in Figure 10.2. The directory

consists of an array of size 4, with each element being a pointer to a bucket. (The

global depth and local depth fields will be discussed shortly; ignore them for now.) To

locate a data entry, we apply a hash function to the search field and take the last two

bits of its binary representation to get a number between 0 and 3. The pointer in this

array position gives us the desired bucket; we assume that each bucket can hold four

data entries. Thus, to locate a data entry with hash value 5 (binary 101), we look at

directory element 01 and follow the pointer to the data page (bucket B in the figure).

To insert a data entry, we search to find the appropriate bucket. For example, to insert

a data entry with hash value 13 (denoted as 13*), we would examine directory element

01 and go to the page containing data entries 1*, 5*, and 21*. Since the page has space

for an additional data entry, we are done after we insert the entry (Figure 10.3).
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Figure 10.2 Example of an Extendible Hashed File
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Figure 10.3 After Inserting Entry r with h(r)=13
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Next, let us consider insertion of a data entry into a full bucket. The essence of the

Extendible Hashing idea lies in how we deal with this case. Consider the insertion of

data entry 20* (binary 10100). Looking at directory element 00, we are led to bucket

A, which is already full. We must first split the bucket by allocating a new bucket1

and redistributing the contents (including the new entry to be inserted) across the old

bucket and its ‘split image.’ To redistribute entries across the old bucket and its split

image, we consider the last three bits of h(r); the last two bits are 00, indicating a

data entry that belongs to one of these two buckets, and the third bit discriminates

between these buckets. The redistribution of entries is illustrated in Figure 10.4.
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2 2
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LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12* 20*
Bucket A2 (split image of bucket A)

Figure 10.4 While Inserting Entry r with h(r)=20

Notice a problem that we must now resolve—we need three bits to discriminate between

two of our data pages (A and A2), but the directory has only enough slots to store

all two-bit patterns. The solution is to double the directory. Elements that differ only

in the third bit from the end are said to ‘correspond’: corresponding elements of the

directory point to the same bucket with the exception of the elements corresponding

to the split bucket. In our example, bucket 0 was split; so, new directory element 000

points to one of the split versions and new element 100 points to the other. The sample

file after completing all steps in the insertion of 20* is shown in Figure 10.5.

Thus, doubling the file requires allocating a new bucket page, writing both this page

and the old bucket page that is being split, and doubling the directory array. The

1Since there are no overflow pages in Extendible Hashing, a bucket can be thought of as a single

page.
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Figure 10.5 After Inserting Entry r with h(r)=20

directory is likely to be much smaller than the file itself because each element is just

a page-id, and can be doubled by simply copying it over (and adjusting the elements

for the split buckets). The cost of doubling is now quite acceptable.

We observe that the basic technique used in Extendible Hashing is to treat the result

of applying a hash function h as a binary number and to interpret the last d bits,

where d depends on the size of the directory, as an offset into the directory. In our

example d is originally 2 because we only have four buckets; after the split, d becomes

3 because we now have eight buckets. A corollary is that when distributing entries

across a bucket and its split image, we should do so on the basis of the dth bit. (Note

how entries are redistributed in our example; see Figure 10.5.) The number d is called

the global depth of the hashed file and is kept as part of the header of the file. It is

used every time we need to locate a data entry.

An important point that arises is whether splitting a bucket necessitates a directory

doubling. Consider our example, as shown in Figure 10.5. If we now insert 9*, it

belongs in bucket B; this bucket is already full. We can deal with this situation by

splitting the bucket and using directory elements 001 and 101 to point to the bucket

and its split image, as shown in Figure 10.6.

Thus, a bucket split does not necessarily require a directory doubling. However, if

either bucket A or A2 grows full and an insert then forces a bucket split, we are forced

to double the directory again.
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Figure 10.6 After Inserting Entry r with h(r)=9

In order to differentiate between these cases, and determine whether a directory dou-

bling is needed, we maintain a local depth for each bucket. If a bucket whose local

depth is equal to the global depth is split, the directory must be doubled. Going back

to the example, when we inserted 9* into the index shown in Figure 10.5, it belonged

to bucket B with local depth 2, whereas the global depth was 3. Even though the

bucket was split, the directory did not have to be doubled. Buckets A and A2, on the

other hand, have local depth equal to the global depth and, if they grow full and are

split, the directory must then be doubled.

Initially, all local depths are equal to the global depth (which is the number of bits

needed to express the total number of buckets). We increment the global depth by 1

each time the directory doubles, of course. Also, whenever a bucket is split (whether

or not the split leads to a directory doubling), we increment by 1 the local depth of

the split bucket and assign this same (incremented) local depth to its (newly created)

split image. Intuitively, if a bucket has local depth l, the hash values of data entries

in it agree upon the last l bits; further, no data entry in any other bucket of the file

has a hash value with the same last l bits. A total of 2d−l directory elements point to

a bucket with local depth l; if d = l, exactly one directory element is pointing to the

bucket, and splitting such a bucket requires directory doubling.



Hash-Based Indexing 285

A final point to note is that we can also use the first d bits (the most significant bits)

instead of the last d (least significant bits), but in practice the last d bits are used. The

reason is that a directory can then be doubled simply by copying it.

In summary, a data entry can be located by computing its hash value, taking the last

d bits, and looking in the bucket pointed to by this directory element. For inserts,

the data entry is placed in the bucket to which it belongs and the bucket is split if

necessary to make space. A bucket split leads to an increase in the local depth, and

if the local depth becomes greater than the global depth as a result, to a directory

doubling (and an increase in the global depth) as well.

For deletes, the data entry is located and removed. If the delete leaves the bucket

empty, it can be merged with its split image, although this step is often omitted in

practice. Merging buckets decreases the local depth. If each directory element points to

the same bucket as its split image (i.e., 0 and 2d−1 point to the same bucket, namely

A; 1 and 2d−1 + 1 point to the same bucket, namely B, which may or may not be

identical to A; etc.), we can halve the directory and reduce the global depth, although

this step is not necessary for correctness.

The insertion examples can be worked out backwards as examples of deletion. (Start

with the structure shown after an insertion and delete the inserted element. In each

case the original structure should be the result.)

If the directory fits in memory, an equality selection can be answered in a single disk

access, as for Static Hashing (in the absence of overflow pages), but otherwise, two

disk I/Os are needed. As a typical example, a 100 MB file with 100 bytes per data

entry and a page size of 4 KB contains 1,000,000 data entries and only about 25,000

elements in the directory. (Each page/bucket contains roughly 40 data entries, and

we have one directory element per bucket.) Thus, although equality selections can be

twice as slow as for Static Hashing files, chances are high that the directory will fit in

memory and performance is the same as for Static Hashing files.

On the other hand, the directory grows in spurts and can become large for skewed data

distributions (where our assumption that data pages contain roughly equal numbers of

data entries is not valid). In the context of hashed files, a skewed data distribution

is one in which the distribution of hash values of search field values (rather than the

distribution of search field values themselves) is skewed (very ‘bursty’ or nonuniform).

Even if the distribution of search values is skewed, the choice of a good hashing function

typically yields a fairly uniform distribution of hash values; skew is therefore not a

problem in practice.

Further, collisions, or data entries with the same hash value, cause a problem and

must be handled specially: when more data entries than will fit on a page have the

same hash value, we need overflow pages.
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10.3 LINEAR HASHING *

Linear Hashing is a dynamic hashing technique, like Extendible Hashing, adjusting

gracefully to inserts and deletes. In contrast to Extendible Hashing, it does not require

a directory, deals naturally with collisions, and offers a lot of flexibility with respect

to the timing of bucket splits (allowing us to trade off slightly greater overflow chains

for higher average space utilization). If the data distribution is very skewed, however,

overflow chains could cause Linear Hashing performance to be worse than that of

Extendible Hashing.

The scheme utilizes a family of hash functions h0, h1, h2, . . ., with the property that

each function’s range is twice that of its predecessor. That is, if hi maps a data entry

into one of M buckets, hi+1 maps a data entry into one of 2M buckets. Such a family is

typically obtained by choosing a hash function h and an initial number N of buckets,2

and defining hi(value) = h(value) mod (2iN). If N is chosen to be a power of 2, then

we apply h and look at the last di bits; d0 is the number of bits needed to represent

N , and di = d0 + i. Typically we choose h to be a function that maps a data entry to

some integer. Suppose that we set the initial number N of buckets to be 32. In this

case d0 is 5, and h0 is therefore h mod 32, that is, a number in the range 0 to 31. The

value of d1 is d0 + 1 = 6, and h1 is h mod (2 ∗ 32), that is, a number in the range 0 to

63. h2 yields a number in the range 0 to 127, and so on.

The idea is best understood in terms of rounds of splitting. During round number

Level, only hash functions hLevel and hLevel+1 are in use. The buckets in the file at the

beginning of the round are split, one by one from the first to the last bucket, thereby

doubling the number of buckets. At any given point within a round, therefore, we have

buckets that have been split, buckets that are yet to be split, and buckets created by

splits in this round, as illustrated in Figure 10.7.

Consider how we search for a data entry with a given search key value. We apply

hash function hLevel, and if this leads us to one of the unsplit buckets, we simply look

there. If it leads us to one of the split buckets, the entry may be there or it may have

been moved to the new bucket created earlier in this round by splitting this bucket; to

determine which of these two buckets contains the entry, we apply hLevel+1.

Unlike Extendible Hashing, when an insert triggers a split, the bucket into which the

data entry is inserted is not necessarily the bucket that is split. An overflow page is

added to store the newly inserted data entry (which triggered the split), as in Static

Hashing. However, since the bucket to split is chosen in round-robin fashion, eventually

all buckets are split, thereby redistributing the data entries in overflow chains before

the chains get to be more than one or two pages long.

2Note that 0 to N − 1 is not the range of h!
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Figure 10.7 Buckets during a Round in Linear Hashing

We now describe Linear Hashing in more detail. A counter Level is used to indicate the

current round number and is initialized to 0. The bucket to split is denoted by Next and

is initially bucket 0 (the first bucket). We denote the number of buckets in the file at

the beginning of round Level by NLevel. We can easily verify that NLevel = N ∗2Level.

Let the number of buckets at the beginning of round 0, denoted by N0, be N . We

show a small linear hashed file in Figure 10.8. Each bucket can hold four data entries,

and the file initially contains four buckets, as shown in the figure.

1 0hh

Level=0, N=4

00

01

10

11

000

001

010

011

The actual contents
of the linear hashed file

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary 
bucket page

44* 36*32*

25*9* 5*

14* 18* 10* 30*

31* 35* 11*7*

for illustration only
This information is

Figure 10.8 Example of a Linear Hashed File

We have considerable flexibility in how to trigger a split, thanks to the use of overflow

pages. We can split whenever a new overflow page is added, or we can impose additional
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conditions based on conditions such as space utilization. For our examples, a split is

‘triggered’ when inserting a new data entry causes the creation of an overflow page.

Whenever a split is triggered the Next bucket is split, and hash function hLevel+1

redistributes entries between this bucket (say bucket number b) and its split image;

the split image is therefore bucket number b + NLevel. After splitting a bucket, the

value of Next is incremented by 1. In the example file, insertion of data entry 43*

triggers a split. The file after completing the insertion is shown in Figure 10.9.
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00100
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PRIMARY
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OVERFLOW

PAGES

Level=0

32*
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31* 35* 7* 11*

44* 36*

43*

Figure 10.9 After Inserting Record r with h(r)=43

At any time in the middle of a round Level, all buckets above bucket Next have been

split, and the file contains buckets that are their split images, as illustrated in Figure

10.7. Buckets Next through NLevel have not yet been split. If we use hLevel on a data

entry and obtain a number b in the range Next through NLevel, the data entry belongs

to bucket b. For example, h0(18) is 2 (binary 10); since this value is between the

current values of Next (= 1) and N1 (= 4), this bucket has not been split. However, if

we obtain a number b in the range 0 through Next, the data entry may be in this bucket

or in its split image (which is bucket number b + NLevel); we have to use hLevel+1 to

determine which of these two buckets the data entry belongs to. In other words, we

have to look at one more bit of the data entry’s hash value. For example, h0(32) and

h0(44) are both 0 (binary 00). Since Next is currently equal to 1, which indicates a

bucket that has been split, we have to apply h1. We have h1(32) = 0 (binary 000)

and h1(44) = 4 (binary 100). Thus, 32 belongs in bucket A and 44 belongs in its split

image, bucket A2.
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Not all insertions trigger a split, of course. If we insert 37* into the file shown in

Figure 10.9, the appropriate bucket has space for the new data entry. The file after

the insertion is shown in Figure 10.10.
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Figure 10.10 After Inserting Record r with h(r)=37

Sometimes the bucket pointed to by Next (the current candidate for splitting) is full,

and a new data entry should be inserted in this bucket. In this case a split is triggered,

of course, but we do not need a new overflow bucket. This situation is illustrated by

inserting 29* into the file shown in Figure 10.10. The result is shown in Figure 10.11.

When Next is equal to NLevel−1 and a split is triggered, we split the last of the buckets

that were present in the file at the beginning of round Level. The number of buckets

after the split is twice the number at the beginning of the round, and we start a new

round with Level incremented by 1 and Next reset to 0. Incrementing Level amounts

to doubling the effective range into which keys are hashed. Consider the example file

in Figure 10.12, which was obtained from the file of Figure 10.11 by inserting 22*, 66*,

and 34*. (The reader is encouraged to try to work out the details of these insertions.)

Inserting 50* causes a split that leads to incrementing Level, as discussed above; the

file after this insertion is shown in Figure 10.13.

In summary, an equality selection costs just one disk I/O unless the bucket has overflow

pages; in practice, the cost on average is about 1.2 disk accesses for reasonably uniform

data distributions. (The cost can be considerably worse—linear in the number of data

entries in the file—if the distribution is very skewed. The space utilization is also very

poor with skewed data distributions.) Inserts require reading and writing a single page,

unless a split is triggered.
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Figure 10.11 After Inserting Record r with h(r)=29
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Figure 10.13 After Inserting Record r with h(r)=50

We will not discuss deletion in detail, but it is essentially the inverse of insertion. If

the last bucket in the file is empty, it can be removed and Next can be decremented.

(If Next is 0 and the last bucket becomes empty, Next is made to point to bucket

(M/2) − 1, where M is the current number of buckets, Level is decremented, and

the empty bucket is removed.) If we wish, we can combine the last bucket with its

split image even when it is not empty, using some criterion to trigger this merging, in

essentially the same way. The criterion is typically based on the occupancy of the file,

and merging can be done to improve space utilization.

10.4 EXTENDIBLE HASHING VERSUS LINEAR HASHING *

To understand the relationship between Linear Hashing and Extendible Hashing, imag-

ine that we also have a directory in Linear Hashing with elements 0 to N −1. The first

split is at bucket 0, and so we add directory element N . In principle, we may imagine

that the entire directory has been doubled at this point; however, because element 1

is the same as element N + 1, element 2 is the same as element N + 2, and so on, we

can avoid the actual copying for the rest of the directory. The second split occurs at

bucket 1; now directory element N + 1 becomes significant and is added. At the end

of the round, all the original N buckets are split, and the directory is doubled in size

(because all elements point to distinct buckets).
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We observe that the choice of hashing functions is actually very similar to what goes on

in Extendible Hashing—in effect, moving from hi to hi+1 in Linear Hashing corresponds

to doubling the directory in Extendible Hashing. Both operations double the effective

range into which key values are hashed; but whereas the directory is doubled in a

single step of Extendible Hashing, moving from hi to hi+1, along with a corresponding

doubling in the number of buckets, occurs gradually over the course of a round in Linear

Hashing. The new idea behind Linear Hashing is that a directory can be avoided by

a clever choice of the bucket to split. On the other hand, by always splitting the

appropriate bucket, Extendible Hashing may lead to a reduced number of splits and

higher bucket occupancy.

The directory analogy is useful for understanding the ideas behind Extendible and

Linear Hashing. However, the directory structure can be avoided for Linear Hashing

(but not for Extendible Hashing) by allocating primary bucket pages consecutively,

which would allow us to locate the page for bucket i by a simple offset calculation.

For uniform distributions, this implementation of Linear Hashing has a lower average

cost for equality selections (because the directory level is eliminated). For skewed

distributions, this implementation could result in any empty or nearly empty buckets,

each of which is allocated at least one page, leading to poor performance relative to

Extendible Hashing, which is likely to have higher bucket occupancy.

A different implementation of Linear Hashing, in which a directory is actually main-

tained, offers the flexibility of not allocating one page per bucket; null directory el-

ements can be used as in Extendible Hashing. However, this implementation intro-

duces the overhead of a directory level and could prove costly for large, uniformly

distributed files. (Also, although this implementation alleviates the potential problem

of low bucket occupancy by not allocating pages for empty buckets, it is not a complete

solution because we can still have many pages with very few entries.)

10.5 POINTS TO REVIEW

Hash-based indexes are designed for equality queries. A hashing function is ap-

plied to a search field value and returns a bucket number. The bucket number

corresponds to a page on disk that contains all possibly relevant records. A Static

Hashing index has a fixed number of primary buckets. During insertion, if the

primary bucket for a data entry is full, an overflow page is allocated and linked to

the primary bucket. The list of overflow pages at a bucket is called its overflow

chain. Static Hashing can answer equality queries with a single disk I/O, in the

absence of overflow chains. As the file grows, however, Static Hashing suffers from

long overflow chains and performance deteriorates. (Section 10.1)

Extendible Hashing is a dynamic index structure that extends Static Hashing by

introducing a level of indirection in the form of a directory. Usually the size of
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the directory is 2d for some d, which is called the global depth of the index. The

correct directory entry is found by looking at the first d bits of the result of the

hashing function. The directory entry points to the page on disk with the actual

data entries. If a page is full and a new data entry falls into that page, data

entries from the full page are redistributed according to the first l bits of the

hashed values. The value l is called the local depth of the page. The directory can

get large if the data distribution is skewed. Collisions, which are data entries with

the same hash value, have to be handled specially. (Section 10.2)

Linear Hashing avoids a directory by splitting the buckets in a round-robin fashion.

Linear Hashing proceeds in rounds. At the beginning of each round there is an

initial set of buckets. Insertions can trigger bucket splits, but buckets are split

sequentially in order. Overflow pages are required, but overflow chains are unlikely

to be long because each bucket will be split at some point. During each round,

two hash functions hLevel and hLevel+1 are in use where hLevel is used to locate

buckets that are not yet split and hLevel+1 is used to locate buckets that already

split. When all initial buckets have split, the current round ends and the next

round starts. (Section 10.3)

Extendible and Linear Hashing are closely related. Linear Hashing avoids a direc-

tory structure by having a predefined order of buckets to split. The disadvantage

of Linear Hashing relative to Extendible Hashing is that space utilization could be

lower, especially for skewed distributions, because the bucket splits are not con-

centrated where the data density is highest, as they are in Extendible Hashing. A

directory-based implementation of Linear Hashing can improve space occupancy,

but it is still likely to be inferior to Extendible Hashing in extreme cases. (Sec-

tion 10.4)

EXERCISES

Exercise 10.1 Consider the Extendible Hashing index shown in Figure 10.14. Answer the

following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that

there have been no deletions from this index so far?

3. Suppose you are told that there have been no deletions from this index so far. What can

you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 68.

5. Show the original index after inserting entries with hash values 17 and 69.

6. Show the original index after deleting the entry with hash value 21. (Assume that the

full deletion algorithm is used.)

7. Show the original index after deleting the entry with hash value 10. Is a merge triggered

by this deletion? If not, explain why. (Assume that the full deletion algorithm is used.)
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Exercise 10.2 Consider the Linear Hashing index shown in Figure 10.15. Assume that we

split whenever an overflow page is created. Answer the following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that

there have been no deletions from this index so far?



Hash-Based Indexing 295

3. Suppose you know that there have been no deletions from this index so far. What can

you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 4.

5. Show the original index after inserting an entry with hash value 15.

6. Show the original index after deleting the entries with hash values 36 and 44. (Assume

that the full deletion algorithm is used.)

7. Find a list of entries whose insertion into the original index would lead to a bucket with

two overflow pages. Use as few entries as possible to accomplish this. What is the

maximum number of entries that can be inserted into this bucket before a split occurs

that reduces the length of this overflow chain?

Exercise 10.3 Answer the following questions about Extendible Hashing:

1. Explain why local depth and global depth are needed.

2. After an insertion that causes the directory size to double, how many buckets have

exactly one directory entry pointing to them? If an entry is then deleted from one of

these buckets, what happens to the directory size? Explain your answers briefly.

3. Does Extendible Hashing guarantee at most one disk access to retrieve a record with a

given key value?

4. If the hash function distributes data entries over the space of bucket numbers in a very

skewed (non-uniform) way, what can you say about the size of the directory? What can

you say about the space utilization in data pages (i.e., non-directory pages)?

5. Does doubling the directory require us to examine all buckets with local depth equal to

global depth?

6. Why is handling duplicate key values in Extendible Hashing harder than in ISAM?

Exercise 10.4 Answer the following questions about Linear Hashing.

1. How does Linear Hashing provide an average-case search cost of only slightly more than

one disk I/O, given that overflow buckets are part of its data structure?

2. Does Linear Hashing guarantee at most one disk access to retrieve a record with a given

key value?

3. If a Linear Hashing index using Alternative (1) for data entries contains N records, with

P records per page and an average storage utilization of 80 percent, what is the worst-

case cost for an equality search? Under what conditions would this cost be the actual

search cost?

4. If the hash function distributes data entries over the space of bucket numbers in a very

skewed (non-uniform) way, what can you say about the space utilization in data pages?

Exercise 10.5 Give an example of when you would use each element (A or B) for each of

the following ‘A versus B’ pairs:

1. A hashed index using Alternative (1) versus heap file organization.

2. Extendible Hashing versus Linear Hashing.
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3. Static Hashing versus Linear Hashing.

4. Static Hashing versus ISAM.

5. Linear Hashing versus B+ trees.

Exercise 10.6 Give examples of the following:

1. A Linear Hashing index and an Extendible Hashing index with the same data entries,

such that the Linear Hashing index has more pages.

2. A Linear Hashing index and an Extendible Hashing index with the same data entries,

such that the Extendible Hashing index has more pages.

Exercise 10.7 Consider a relation R(a, b, c, d) containing 1,000,000 records, where each

page of the relation holds 10 records. R is organized as a heap file with dense secondary

indexes, and the records in R are randomly ordered. Assume that attribute a is a candidate

key for R, with values lying in the range 0 to 999,999. For each of the following queries, name

the approach that would most likely require the fewest I/Os for processing the query. The

approaches to consider follow:

Scanning through the whole heap file for R.

Using a B+ tree index on attribute R.a.

Using a hash index on attribute R.a.

The queries are:

1. Find all R tuples.

2. Find all R tuples such that a < 50.

3. Find all R tuples such that a = 50.

4. Find all R tuples such that a > 50 and a < 100.

Exercise 10.8 How would your answers to Exercise 10.7 change if attribute a is not a can-

didate key for R? How would they change if we assume that records in R are sorted on

a?

Exercise 10.9 Consider the snapshot of the Linear Hashing index shown in Figure 10.16.

Assume that a bucket split occurs whenever an overflow page is created.

1. What is the maximum number of data entries that can be inserted (given the best possible

distribution of keys) before you have to split a bucket? Explain very briefly.

2. Show the file after inserting a single record whose insertion causes a bucket split.

3. (a) What is the minimum number of record insertions that will cause a split of all four

buckets? Explain very briefly.

(b) What is the value of Next after making these insertions?

(c) What can you say about the number of pages in the fourth bucket shown after this

series of record insertions?

Exercise 10.10 Consider the data entries in the Linear Hashing index for Exercise 10.9.
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1. Show an Extendible Hashing index with the same data entries.

2. Answer the questions in Exercise 10.9 with respect to this index.

Exercise 10.11 In answering the following questions, assume that the full deletion algorithm

is used. Assume that merging is done when a bucket becomes empty.

1. Give an example of an Extendible Hashing index in which deleting an entry reduces the

global depth.

2. Give an example of a Linear Hashing index in which deleting an entry causes Next to

be decremented but leaves Level unchanged. Show the file before and after the entry is

deleted.

3. Give an example of a Linear Hashing index in which deleting an entry causes Level to

be decremented. Show the file before and after the entry is deleted.

4. Give an example of an Extendible Hashing index and a list of entries e1, e2, e3 such that

inserting the entries in order leads to three splits and deleting them in the reverse order

yields the original index. If such an example does not exist, explain.

5. Give an example of a Linear Hashing index and a list of entries e1, e2, e3 such that

inserting the entries in order leads to three splits and deleting them in the reverse order

yields the original index. If such an example does not exist, explain.

PROJECT-BASED EXERCISES

Exercise 10.12 (Note to instructors: Additional details must be provided if this question is

assigned. See Appendix B.) Implement Linear Hashing or Extendible Hashing in Minibase.
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